У нашій онлайн базі вже 23511 рефератів!

Навігація
Перелік розділів
Найпопулярніше
Нові реферати
Пошук
Замовити реферат
Додати реферат
В вибране
Контакти
Російські реферати
Статьи
Об'яви

Новини
Загрузка...
На сайті всього 23511 рефератів!
Ласкаво просимо на UA.TextReferat.com
Реферати, курсові і дипломні українською мовою, які можна скачати цілком або переглядати по сторінкам.

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання. Авторські права на реферати належать їх авторам.

Аналітична геометрія на площині

Аналітична геометрія на площині

Пряма лінія на площині найчастіше задається у вигляді рівняння

y = k×x + b (2.3)

де k=tga ‑ нахил цієї прямої до осі OX (рис 2.3,а).

Часткові випадки розташування прямої (y=kx, x=a, y=b) показані, відповідно, на рис.2.3б-г.

y y y y

b

b

x 1350 x x x

a

а б в г

Рис.2.3

Загальне рівняння прямої на площині має вигляд

Ax + By + C = 0 (2.2)

Якщо B¹0 , то рівняння (2.2) можна перетворити у (2.1).

Приклади. Побудувати графіки прямих y=1-x та 2x-y+2=0. У першому прикладі k=tga= -1, отже a=1350 (рис. 2.4,а). В другому прикладі маємо y=2x+2 , отже, k=tga=2 (рис. 2.4,б).

y y

2x-y+2=0

y=1-x 2

1

a=1350

1 x -1 x

а б

Рис. 2.4

Наведемо ще деякі з рівнянь, які задають пряму на площині.

Пряма, яка проходить через дві задані точки (x1;y1) та (x2;y2):

, (2.3)

або, що те саме,

. (2.3¢)

Пряма, яка проходить через задану точку (x1;y1) паралельно до заданої прямої y=ax+b :

y-y1=a(x-x1) (2.4)

Пряма, яка проходить через задану точку (x1;y1) перпендикулярно до заданої прямої y=ax+b :

(2.5)

Рівняння прямої у відрізках

(2.6)

Переходи від одного вигляду рівняння прямої до іншого виконують за допомогою нескладних перетворень.

Приклад. Загальне рівняння прямої має вигляд 2x-y+2=0.

Перейдемо до рівняння прямої у відрізках:

-2x+y=2,

.

Перейдемо до рівняння з кутовим коефіцієнтом:

y=2x+2.

Візьмемо на нашій прямій дві точки, наприклад, (x1;y1)=(-1;0) та (x2;y2)=(0;2),і побудуємо рівняння прямої, яка проходить через ці дві точки:

.

Наведемо ще декілька формул щодо прямих на площині.

Кут між прямими y=a1x+b1 та y=a2x+b2 обчислюється за формулою

Прямі y=a1x+b1 та y=a2x+b2 отже, є паралельними, якщо a1=a2, та перпендикулярними, якщо a1×a2 = -1.

Точка перетину прямих є розв’язком системи рівнянь

.

Відстань від точки M(x1;y1) до прямої Ax+By+C=0 визначають за формулою

.

Приклад. Попит Q (кількість товару, що буде куплено) на товар залежно від його ціни p на ринку задається формулою p=p(Q)=500-10Q. Пропозицію Q (кількість товару, що потрапить на ринок) залежно від ціни задає формула p=p(Q)=50+5Q.

Зобразити графічно криві попиту та пропозиції і визначити ціну рівноваги.

Маємо такий графік (рис.2.5).

p

500

Пропозиція

p*

Попит

50

Q* Q

Рис. 2.5.

Ціну рівноваги p* (а також рівноважний випуск Q*) визначаємо як точку перетину прямих попиту та пропозиції, тобто розв’язуємо систему лінійних рівнянь

.

Помноживши друге рівняння на 2 і додавши до першого, отримаємо p*=200 та Q*=30 .

Приклад. Нехай ринкова ціна за одиницю деякого виробу становить p=10. Витрати, пов’язані з випуском кожної одиниці цього виробу в деякій фірмі, Vc=5 (змінні витрати). Постійні витрати фірми становлять Fc=40. Визначити обсяг виробництва Q, за якого фірма матиме прибуток.

Загальні витрати фірми на виготовлення Q одиниць продукції описуються залежністю

Tc = Fc + Q×Vc = 40+5Q .

Доход фірми від виготовлення і реалізації Q одиниць продукції становить

TR = p×Q =10Q .

Визначимо такий випуск Q*, за якого доход фірми збігається з її витратами:

TR = TC ,

10Q = 40+5Q ,

Q* = 8 .

Отже, прибуток (різниця між доходом і витратами) в цій моделі починається при Q*>8 і далі необмежено зростає (рис. 2.6).

Tc,TR

TR(доход)=10Q

Tc(витрати)=40+5Q

40

Q*=8 Q

Рис. 2.6.

Розглянемо також основні криві другого порядку та їхні рівняння. Це такі криві, рівняння яких містять змінні x2 і/або y2.

Рівняння кола з центром у точці (a;b) та радіусом r має вигляд

(x-a)2+(y-b)2=r2 .

У частковому випадку (коло одиничного радіуса з центром у початку координат) це рівняння спрощується:

x2+y2=r2 .

Рівняння еліпса (геометричного місця точок, сума відстаней до яких від двох заданих точок є сталою) записується так (рис. 2.7):

[1] 2

завантажити реферат завантажити реферат
Нове
Цікаві новини
загрузка...
Замовлення реферату
Замовлення реферату

Лічильники

Rambler's Top100

Усі права захищено. @ 2005-2017 textreferat.com