У нашій онлайн базі вже 23511 рефератів!

Навігація
Перелік розділів
Найпопулярніше
Нові реферати
Пошук
Замовити реферат
Додати реферат
В вибране
Контакти
Російські реферати
Статьи
Об'яви

Новини
Загрузка...
На сайті всього 23511 рефератів!
Ласкаво просимо на UA.TextReferat.com
Реферати, курсові і дипломні українською мовою, які можна скачати цілком або переглядати по сторінкам.

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання. Авторські права на реферати належать їх авторам.

Багатофакторний кореляційно-регресійний аналіз

Багатофакторний кореляційно-регресійний аналіз

У багатьох випадках на результативну ознаку впливає не один, а кілька факторів Між факторами існують складні взаємозв'язки, тому їхній вплив на результативну ознаку с комплексним, а не просто сумою ізольованих впливів

Багатофакторний кореляційно-регресійний аналіз дає змогу оці­нити міру впливу на досліджуваний результативний показник кожного із введених у модель факторів при фіксованому положенні на середньому рівні інших факторів Важливою умовою с відсутність функціональ­ного зв'язку між факторами

Математично завдання зводиться до знаходження аналітичного виразу, котрий якнайкраще відображував би зв'язок факторних ознак з результативною, тобто знайти функцію

=f(X1,X2,X3, . ,Хп).

Найскладнішою проблемою є вибір форми зв'язку, аналітичного виразу зв'язку, На підставі чого за наявними факторами визначають результативну ознаку-функцію Ця функція мас краще за інші відо­бражати реальні зв'язки між досліджуваним показником і факторами. Емпіричне обгрунтування типу функції за допомогою графічного аналізу зв'язків для багатофакторних моделей майже непридатне. Форму зв'язку можна визначати добиранням функцій різних типів, але це пов'язане з великою кількістю зайвих розрахунків. Зважаючи на те, що будь-яку функцію багатьох змінних шляхом логарифмування або заміни змінних можна звести до лінійного вигляду, рівняння множинної регресії можна виразити у лінійній формі:

*= a0 + a1X1 + a2X2 + …+anXn.

Параметри рівняння обчислюють способом найменших квадратів Так, для розрахунку параметрів рівняння лінійної двофакторноі регресії

= a0 + a1X1 + a2X2,

де — розрахункові значення результативної ознаки-функції; Х1 і Х2 — факторні ознаки; a0, al i a2 — параметри рівняння, які можна обчислити способом найменших квадратів, розв'язавши систему нор­мальних рівнянь:

Кожний коефіцієнт рівняння вказує на ступінь впливу відпо­відного фактора на результативний показник при фіксованому поло­женні решти факторів, тобто як зі зміною окремого фактора на одиницю змінюється результативний показник Вільний член рівнян­ня множинної регресії економічного змісту не має.

Звернемося до прикладу Стаж роботи, тарифний розряд і денна заробітна плата десяти робітників підприємства характеризуються певними даними (табл.1) Треба встановити залежність заробітної плати Y від двох факторів, стажу роботи робітників X, і тарифного розряду Х2. Заповнимо розрахункову таблицю.

Таблиця 1. Розрахункові дані до визначення рівняння зв'язку

Hoмep робіт-ника

n

Стаж роботи

X1

Тариф­ний розряд

X2

Денна заро-бітна плата Y,

грн.

YХ1

YХ2

X12

X22

Y2

X1X2

Yx

1

1

2

3

3

6

1

4

9

2

2,3

2

3

3

6

18

18

П

9

36

9

5,0

3

6

3

5

30

15

36

9

25

18

7,4

4

5

2

7

35

14

25

4

49

10

5,7

5

8

5

10

80

50

64

25

100

40

10,8

6

10

4

9

90

36

100

16

8

40

11,6

7

9

6

13

117

78

81

36

169

54

12,5

8

15

5

18

270

90

225

25

324

75

16,6

9

12

5

15

180

75

144

25

225

60

14,1

10

18

6

20

360

120

324

36

400

108

20,0

Разом

87

41

106

1183

502

1009

189

1418

416

106,0

У серед-ньому

8,7

4,1

10,6

118,3

50,2

100,9

18,9

141,8

41,6

10,6

[1] 2

завантажити реферат завантажити реферат
Нове
Цікаві новини
загрузка...
Замовлення реферату
Замовлення реферату

Лічильники

Rambler's Top100

Усі права захищено. @ 2005-2017 textreferat.com