У нашій онлайн базі вже 23510 рефератів!

Навігація
Перелік розділів
Найпопулярніше
Нові реферати
Пошук
Замовити реферат
Додати реферат
В вибране
Контакти
Російські реферати
Статьи
Об'яви
Новини
На сайті всього 23510 рефератів!
Ласкаво просимо на UA.TextReferat.com
Реферати, курсові і дипломні українською мовою, які можна скачати цілком або переглядати по сторінкам.

Усе доступно безкоштовно, тому ми не платимо винагороди за додавання. Авторські права на реферати належать їх авторам.

Вартісить грошей у часі

Сторінка 2

rt/360 або rt/365

Pt=P(1+rt/360) (5)

або Pt=P(1+rt/365) (6)

В формулі (5) фінансовий рік складатиме 360, а в формулі (6) — 365 днів. Вибір формули (5) або (6) залежить від того, з яким інструментом працює інвестор. Так, в банківській системі рік вважається рівним 360 дням. Тому розрахунки по нарахуванню відсотків по вкладах потрібно робити за допомогою формули (5). Розрахунки по операціях з державними короткостроковими облігаціями здійснюються на базі, рівній 365 дням. В даному випадку використовують формулу (6).

В залежності від способу визначення тривалості фінансової операції розраховується або точний, або приблизний (комерційний) відсоток.

Дата видачі і дата погашення позики завжди приймаються за один день. При цьому можливі два варіанти:

1. використовується точна кількість днів позики, яка визначається по спеціальних таблицях, де вказані порядкові номери кожного дня року; 3 номеру, який відповідає дню закінчення позики, рахують день першого дня;

2. береться приблизна кількість днів позики, коли тривалість повного місяця приймається за ЗО днів; цей метод використовується, коли не потрібна велика точність, наприклад, при частковому погашенні позики.

Точний відсоток одержують, коли за часову базу беруть фактичну кількість днів в році (365 або 366) і точне число днів позики.

На практиці вибір того чи іншого способу залежить від величини суми, яка використовується при здійсненні фінансової операції.

Приклад:

60000 грн. надані підприємству в кредит на 4 місяці з 1.05. ц. р. за ставкою 14% річних. Необхідно визначиш суму кредиту до погашення, якщо нарахування здійснюється з використанням: а) точних відсотків, б) приблизних відсотків.

Сума кредиту дорівнює:

при використанні точного відсотку:

Рt = 60000(1+0.14*123/365) = 62830грн.;

при використанні приблизного відсотку:

Рt = 60000(1+0.14*123/360) = 62800грн.;

Для порівняльного аналізу фінансові розрахунки необхідно здійснювати на підставі одного часового періоду, тобто 360 або 365 днів. Тому виникає необхідність перерахунку величини відсотку з однієї часової бази на іншу. Це можливо зробити за допомогою формул (7) і (8):

r365=r360/360*365 (7)

r360=r365/365*360 (8)

де r365 - ставка відсотку на базі 365 днів; r360 - ставка відсотку на базі 360 днів.

Приклад

r360 = 15. Визначити ставку відсотку на базі 365 днів. Відсоткова ставка дорівнює:

r365=15%/360*365=15.21%

В прикладі відсоткова ставка на базі 365 днів дорівнює 15,21%, а для 360 днів — тільки 15%. Такий результат одержується в зв'язку з тим, що в першому випадку додатково передбачається нарахування відсотків ще протягом 5 днів.

Якщо період нарахування відсотків вимірюється в місяцях, то формули (5) і (6) можна представити наступним чином:

Pt = Р(1+rt/12) (9)

де t — кількість місяців, протягом яких нараховується відсоток; Рt — сума, яку інвестор отримає через t місяців.

Приклад

50000 грн. надані підприємству в кредит на шість місяців за ставкою 8% річних. Необхідно визначити суму кредиту до погашення. Вона дорівнює:

Рt = 5ОООО(1 + 0,08*6/12 ) = 52000 грн.

Складний відсоток: нарахування відсотку один раз на рік

У довгострокових фінансово-кредитних угодах частіше використовують нарахування складних відсотків. При нарахуванні складних відсотків їх нараховують не тільки на основну суму, а й на суму, що включає як основну суму, так і нараховані раніше відсотки. У цьому випадку кажуть, що відбувається капіталізація відсотків в міру їх нарахування.

Відповідно до ідеології нарахування складних відсотків за перший період нарахування відсотків базою для нарахування є основна сума:

Р1 = Р(1 +r)

Відмінність результатів для складного і простого відсотків виникає, починаючи з другого періоду нарахування, оскільки в кінці другого року його капітал зросте до:

Р2= Р (1 + r) + Р(1 + r) r = Р (1 + r) (1 + r) = Р (1 + r)2

В кінці третього року він складе:

Р3= Р(1 +r)2 + Р(1 + r)2 r=Р(1 + r)2(1 + r)=Р(1 +r)3

Аналогічно можна показати, що через п років сума на рахунку зросте до величини:

Рn = Р(1+r)n (10)

Формула складних відсотків є однією з базових формул у фінансових розрахунках, тому для зручності користування значення множника, який носить назву мультиплікованого множника і який забезпечує нарощення вартості, табульовані для різних значень г і n.

Приклад

250000 грн. інвестовані на 4 роки під 6% річних. Яку суму одержить інвестор в кінці строку?

P4 = 250000 * (і + О.Об)4 = 250000 • 1.262 = 315500 грн.

Нарахування відсотків декілька разів на рік. Складний відсоток може нараховуватися частіше, ніж один раз на рік, наприклад, раз в півроку, квартал, місяць тощо. Нарахування складних відсотків декілька разів на рік називається компаундингом. Як правило, у фінансових контрактах фіксується річна відсоткова ставка і при цьому відсотки можуть нараховуватися по півріччях, кварталах, місяцях тощо. Відсотки, що нараховуються з певною періодичністю, називаються дискретними. В цьому випадку річна ставка називається номінальною, а відсоткова ставка за один інтервал нарахування вважається рівною відношенню номінальної ставки до кількості інтервалів в році. Нарощена сума буде розраховуватись за наступною формулою:

Pn=P(1+r/m)rm (11)

Де m — періодичність нарахування відсотку протягом року.

Приклад

На вклад до банку в розмірі 9000 грн. строком на 5 років банк нараховує 18% річних. Яка сума буде на рахунку в кінці строку, якщо нарахування відсотків здійснюється за схемою складних відсотків: а) що півроку; б) щоквартально?

а) Р5 = 9000 (1 +0.18/2)5*2=21306.27грн.

б) Р5 = 9000 (1 +0.18/4)5*4=21705.43грн.

Отже, можна зробити висновок, що при фіксованій номінальній ставці є необхідним зазначення частоти нарахувань, оскільки зі зростанням кількості нарахувань відсотків протягом року абсолютний річний доход зростає.

Комбінація простого і складного відсотків. Досить часто фінансові контракти укладаються на період, що відрізняється від цілої кількості років. В даному випадку відсотки можуть нараховуватись або за схемою складних відсотків (формула (10)), або за схемою, яка передбачає нарахування відсотків, що включає і складний, і простий відсотки (за змішаною схемою). Наприклад, кошти вкладника знаходяться на рахунку в банку п років і І днів. Відсотки капіталізуються (тобто приєднуються до основної суми коштів, на яку нараховується відсоток) в кінці кожного року. Протягом року нараховується простий відсоток. Для такого випадку суму, яку одержить інвестор, можна розрахувати за наступною формулою:

Рn+t= Р(1+r)n(1+rt/360) (12)

де Рn+t — сума, яку одержить інвестор за n років і t днів; Р — початково інвестована сума; t — число днів, за які нараховується простий відсоток; r — відсоток, що нараховується протягом року. На практиці в даному випадку часто користуються формулою складних відсотків з відповідними нецілими показниками ступеня. Але потрібно взяти до уваги, що з точки зору сутності нарахування відсотків цей спосіб є приблизним і погрішність при розрахунках буде тим більшою, чим більше значення величин, що входять до формули. Потрібно враховувати, що приблизний метод дає менший, ніж є в дійсності, результат.

Таким чином, в ситуації, коли номінали грошових сум досить високі, від цього методу краще взагалі відмовитися. .

Приклад

Нехай 6000 грн. інвестовані на 1 рік і 4 місяці під складні відсотки за ставкою 22% річних. Знайти нарощену до кінця строку суму а) за схемою складних відсотків; б) за змішаною схемою.

а)6000(1 + 0,22)1.33 = 7816,45 грн.

 

6)6000(1 + 0,22)1(1 + 0,22*120/360) = 7856,8 грн.

В залежності від того, коли вкладник розміщує кошти на рахунку, простий відсоток може нараховуватись також на початку періоду інвестування коштів або і на початку, і в кінці. Суми, які одержить вкладник, можна розрахувати за допомогою формул (13) і (14) (капіталізація відсотків здійснюється щорічно):

1 [2] 3 4

завантажити реферат завантажити реферат
Нове
Цікаві новини

Замовлення реферату
Замовлення реферату

Лічильники

Rambler's Top100

Усі права захищено. @ 2005-2022 textreferat.com